Students will be able to.... AKA I can.....

- Use experimental evidence to explain how we know the structure of DNA
 - Edwin Chargaff
 - Linus Pauling
 - Rosalind Franklin
 - Maurice Wilkins
 - Watson and Crick

What we knew so far:

- There are 4 nucleic acids
- Purines (1 CN ring)
 - Adenine
 - Guanine
- Pyrimadines (2 C-N rings)
 - Thymine
 - Cytosine

DNA structure

DNA is made up of four bases. RNA also has four bases, but has uracil instead of thymine.

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Erwin Chargaff

and his data, 1950 What pattern(s) do you notice?

PERCENTAGE OF BASE IN DNA								
DNA orgin	Α	Т	G	С				
Human (sperm)	31.0	31.5	19.1	18.4				
Corn (Zea mays)	25.6	25.3	24.5	24.6				
Drosophila	27.3	27.6	22.5	22.5				
Euglena nucleus	22.6	24.4	27.7	25.8				
Escherichia coli	26.1	23.9	24.9	25.1				

Erwin Chargaff

PERCENTAGE OF BASE IN DNA			RATIOS				
DNA orgin	Α	Т	G	С	АЛТ	G/C	(A+T)/(G+C)
Human (sperm)	31.0	31.5	19.1	18.4	0.98	1.03	1.67
Corn (Zea mays)	25.6	25.3	24.5	24.6	1.01	1.00	1.04
Drosophila	27.3	27.6	22.5	22.5	0.99	1.00	1.22
Euglena nucleus	22.6	24.4	27.7	25.8	0.93	1.07	0.88
Escherichia coli	26.1	23.9	24.9	25.1	1.09	0.99	1.00

Conclusion: The amount of A = T and amount of C = G in each species, although the amounts differ from species to species.

Linus Pauling

 His model did not quite work.
 Why not?

Rosalind Franklin Photo 57

Rosalind Franklin

Franklin's X-ray diffraction

Franklin concluded:

- two antiparallel sugar-phosphate backbones
- nitrogenous bases paired in the molecule's interior

Maurice Wilkins

- King's College,
 London
- Was to collaborate with Franklin, but this didn't work out.
 Why not?

Watson and Crick

- Cavendish Laboratory, Cambridge
- Wilkins consulted with Watson and Crick.
 Without Franklin's knowledge, he handed them Franklin's data.
- Watson immediately recognized the significance of Photo 57.
 He and Crick went to work on a model of DNA.

- Franklin's X-ray crystallographic images of DNA were used by Watson to deduce that DNA was a helix
- The X-ray images also enabled Watson to deduce the width of the helix and the spacing of the nitrogenous bases
- The width suggested that the DNA molecule was made up of two strands, forming a double helix

At first, Watson and Crick thought the bases paired like with like (A with A, and so on), but such pairings did not result in a uniform

Purine + purine: too wide

Pyrimidine + pyrimidine: too narrow

Purine + pyrimidine: width consistent with X-ray data

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Fig. 16-UN1

- Watson and Crick reasoned that the pairing was more specific, dictated by the base structures
- They determined that adenine (A) paired only with thymine (T), and guanine (G) paired only with cytosine (C)
- The Watson-Crick model explains Chargaff's rules: in any organism the amount of A = T, and the amount of G = C

Instead, pairing a purine with a pyrimidine resulted in a uniform width consistent with the X-ray

SO:

Many proteins work together in DNA replication and repair

- The relationship between structure and function is manifest in the double helix
- Watson and Crick noted that the specific base pairing suggested a possible copying mechanism for genetic material

The First DNA Model

DNA structure

Across the DNA double-ladder, A always pairs with T, C always pairs with G because of the number of hydrogen bonds the bases form.

DNA structure

The DNA ladder forms a spiral, or helical, structure, with the two sides held together with hydrogen bonds.

chemical structure

(c) Spacefilling model

(b) Partial of DNA structure

Fig. 16-7a 5' end Hydrogen bond 3' end OH 1 nm 3.4 nm CH₂ CH₂ он 3' end **10.34** nm 5' end

(a) Key features of DNA structure (b) Partial chemical structure

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

(c) Space-filling model

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

DNA Replication

- Before cells divide, they must double their DNA so that each cell gets identical copies of the DNA strands.
- DNA replication helps assure that the bases are copied correctly.
- Enzymes carry out the process.

Overview of DNA replication

 Hydrogen bonds break to "unzip" the DNA strand.

 Enzymes guide free nucleotides to the exposed single strands and match the nucleotides.

How enzymes carry out the replication process:

DNA Helicase unzips the DNA. DNA Polymerase synthesizes the new strands, using the old strands as templates.

Copyright © 2005 Pearson Prentice Hall, Inc.

DNA Replication

- <u>Build a DNA Model</u> interactive feature (web)
- <u>DNA Replication</u> animation (web)

Summary

- DNA is a nucleic acid made up of nucleotides.
- The order of the nucleotides is important, and is maintained by matching of bases across the DNA ladder (A-T, C-G), and by enzymes that patrol the DNA
- DNA replication occurs before cell division, and is an orderly, enzyme-driven process.

Students will be able to.... AKA I can.....

- describe the chemical structure of DNA, and explain how we know the structure.
- explain how the coiling of DNA into chromosomes takes place and why this is important.
- explain 4 differences between DNA and RNA, and why each is significant.
- explain the transcription of RNA from DNA.
- describe three types of RNA and explain the role of each in protein synthesis.
- explain how mRNA is translated into protein.
- trace the synthesis of protein from the transcription of DNA into RNA through the production of a finished protein.